If it's not what You are looking for type in the equation solver your own equation and let us solve it.
147t^2-48=0
a = 147; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·147·(-48)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-168}{2*147}=\frac{-168}{294} =-4/7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+168}{2*147}=\frac{168}{294} =4/7 $
| 4x+7=2x-17 | | 3n+7=n8 | | F(-5)=3x-2 | | 4/7=u+7/21 | | -1/5(r-4)=-2 | | -30-6a=-4(a+5) | | 4x-15=7x+23 | | x2−6x=3 | | 8(a-6)=1+a | | 2(x-2)+2x=4x-4 | | F(-4)=-8-5x | | x2−2x=8 | | 8=12t-3t^2 | | 4x+60=104 | | 8(6r-4)=5r-32 | | x-5/12=2/3 | | h-(-2.22=-7.851 | | .05x+.2x=24(0.1) | | 5/8x=-75 | | 4m-5=25 | | 10-4x=-5(1+4x)+x | | 3y+12=9y-34 | | 17-5x=6x+5 | | 5/8x=75 | | 2k-12-3k=3k+4 | | .5(2n+4)+6=-9+4(2n+1) | | -3.7-6x-6.9-2x=7x+1.7 | | 5(7+f=) | | 3h−1h=10 | | 6(10+x)=90 | | (2/x)+(3/x)=1/(x-4) | | 3h−h=10 |